8-3 Slope of a Line

Objective: To find the slope of a line.

Vocabulary

Slope If (x_1, y_1) and (x_2, y_2) are any two different points on a line,

Slope =
$$\frac{\text{rise}}{\text{run}}$$
 = $\frac{\text{difference between } y\text{-coordinates}}{\text{difference between } x\text{-coordinates}}$ = $\frac{y_2 - y_1}{x_2 - x_1}$.

Positive slope The slope of a line that rises from left to right is positive.

Negative slope The slope of a line that falls from left to right is negative.

Zero slope A horizontal line has slope 0.

No slope A vertical line has no slope.

Collinear points Points that lie on the same line.

Example 1 Find the slope of the line through (-1, 3) and (2, 4).

Solution Let
$$(x_1, y_1) = (-1, 3)$$
 and $(x_2, y_2) = (2, 4)$.

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 3}{2 - (-1)} = \frac{1}{3}$$

Example 2 Find the slope of the line through (1, -3) and (4, -3).

Solution Slope = $\frac{-3 - (-3)}{4 - 1} = \frac{0}{3} = 0$ The line has slope 0.

Example 3 Find the slope of the line through (2, -1) and (2, 5).

Solution Slope = $\frac{5 - (-1)}{2 - 2} = \frac{6}{0}$ (undefined) The line has *no* slope.

Find the slope of the line through the given points.

1.
$$(5, -6), (2, -4)$$

3.
$$(0, 1), (2, -2)$$

5.
$$(2, 1), (8, -2)$$

6.
$$(-1, 5)$$
, $(0, 0)$

8.
$$(5, 2), (-1, 2)$$

9.
$$(-3, -4), (1, 2)$$

10.
$$(-5, 2), (7, -6)$$

12.
$$(4, 4), (-4, 6)$$

13.
$$(8, -1), (6, 0)$$

15.
$$(7, 4), (7, -4)$$

8-4 The Slope-Intercept Form of a Linear Equation

Objective: To use the slope-intercept form of a linear equation.

Vocabulary

- y-intercept The y-coordinate of a point where a graph intersects the y-axis. Since the point is on the y-axis, its x-coordinate is 0.
- Slope-intercept form of an equation The equation of a line in the form y = mx + b, where m is the slope and b is the y-intercept.
- Parallel lines Lines in the same plane that do not intersect. Lines with the same slope and different y-intercepts are parallel.

Find the slope and y-intercept of each line: **a.** $y = \frac{5}{2}x + 4$ **b.** $y = \frac{5}{2}x$ **c.** y = 4Example 1

Solution Use the slope-intercept form,
$$y = mx + b$$
.

a.
$$y = \frac{5}{2}x + 4$$
b. $y = \frac{5}{2}x$
 $y = \frac{5}{2}x + 4$
 $y = \frac{5}{2}x + 0$
 $y = \frac{5}{2}x + 0$
 $y = \frac{5}{2}x + 0$

The slope is
$$\frac{5}{2}$$
 and the y-intercept is 4.

$$m \quad b$$
The slope is $\frac{5}{2}$ and the y-intercept is 0.

$$\mathbf{b.} \ \ y = \frac{5}{2}x$$
$$y = \frac{5}{2}x + \frac{5}{2}x$$

$$y = \frac{3}{2}x + 0$$

The slope is
$$\frac{5}{2}$$
 and the y-intercept is 0.

$$\mathbf{c.} \ \ y = 4 \\
y = 0x + 4 \\
\uparrow \qquad \uparrow$$

Find the slope and the y-intercept.

1.
$$y = x - 3$$

2.
$$y = 2x + 3$$

3.
$$y = -2$$

3.
$$y = -2$$
 4. $y = \frac{1}{3}x + 4$

5.
$$y = -\frac{1}{2}x$$

5.
$$y = -\frac{1}{2}x$$
 6. $y = -\frac{1}{3}x - 3$ **7.** $y = -2x + 6$ **8.** $y = -4x + 8$

7.
$$y = -2x + 6$$

8.
$$y = -4x + 8$$

9.
$$y = -x + 5$$
 10. $y=x - 9$

10.
$$y=x-9$$

11.
$$y = 3x - 2$$

12.
$$y = 3$$

Use only the slope and y-intercept to graph $y = -\frac{2}{3}x + 4$. Example 2

Solution

- 1. Since the y-intercept is 4, plot (0, 4).
- 2. Since the slope $m = -\frac{2}{3} = \frac{-2}{3} = \frac{\text{rise}}{\text{run}}$, move 3 units to the right of (0, 4) and 2 units down to locate a second point.
- 3. Draw a line through the points.

Use only the slope and y-intercept to graph each equation. You may wish to verify your graphs on a computer or a graphing calculator.

13.
$$y = \frac{2}{3}x - 4$$

14.
$$y = \frac{3}{4}x - 3$$

15.
$$y = -\frac{1}{2}x$$

13.
$$y = \frac{2}{3}x - 4$$
 14. $y = \frac{3}{4}x - 3$ 15. $y = -\frac{1}{2}x$ 16. $y = -\frac{3}{4}x - 1$

17.
$$y = -x + 3$$
 18. $y = 2x + 1$ 19. $y = -3$ 20. $y = 5$

18.
$$y = 2x + 1$$

19.
$$y = -3$$

20.
$$y = 5$$